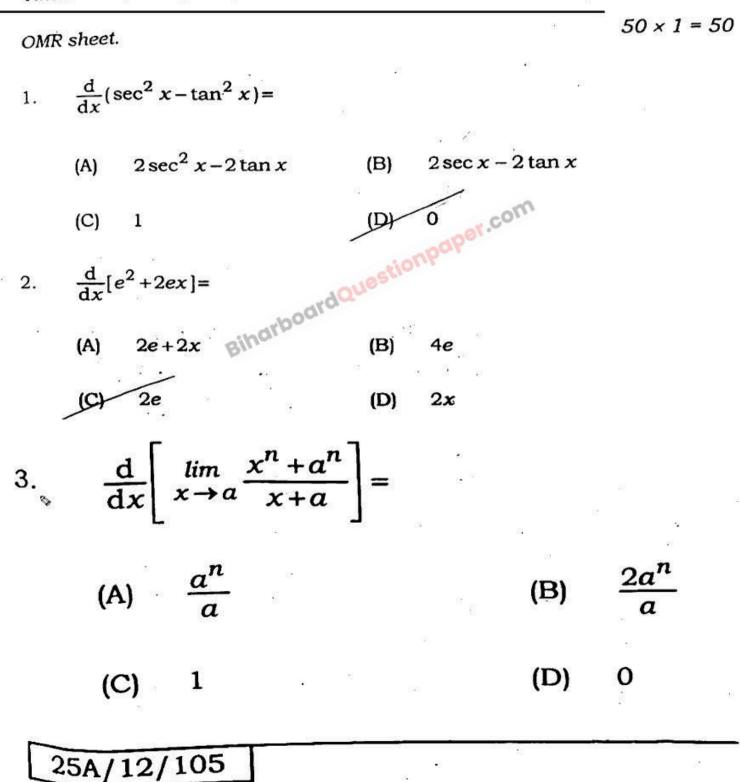
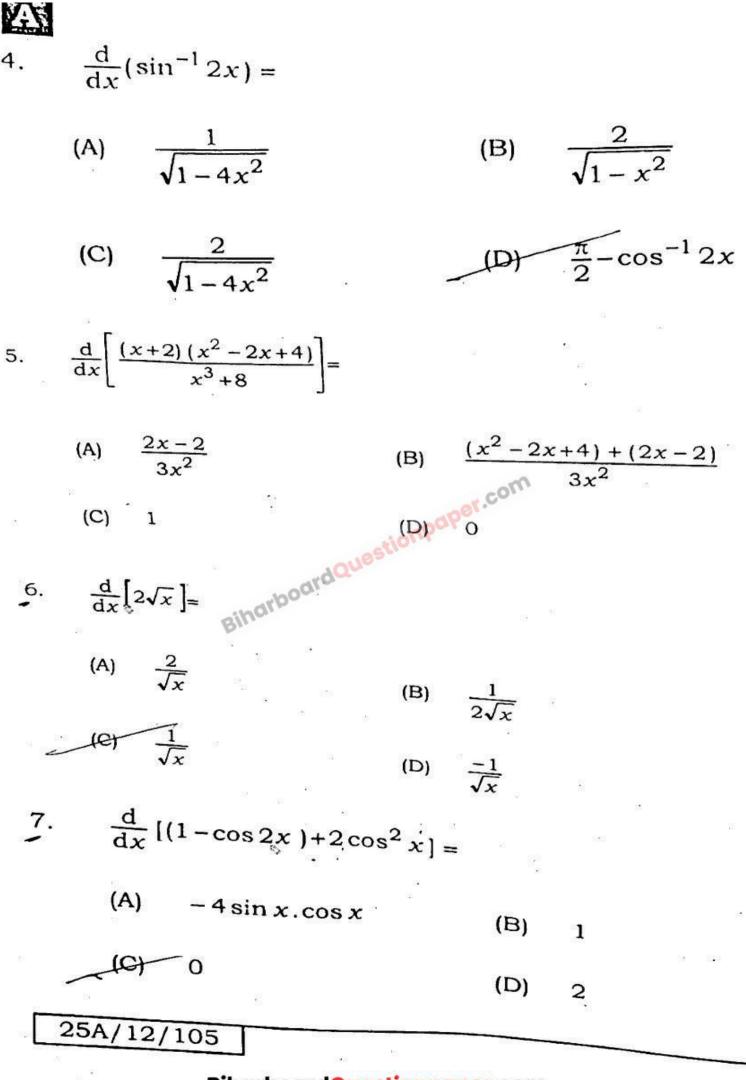
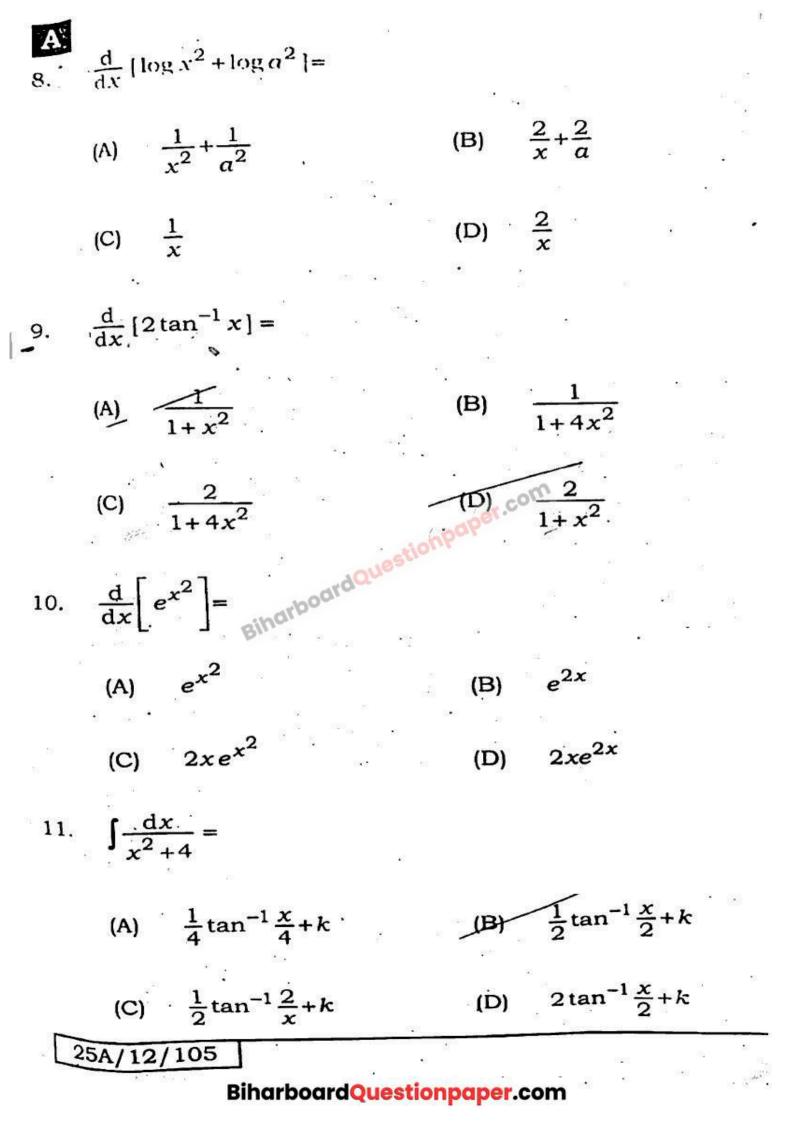



25A/12/105


खण्ड - अ / SECTION - A


A


वस्तुनिष्ठ प्रश्न / Objective Type Questions

• प्रश्न संख्या 1 से 100 तक के प्रश्न के साथ चार विकल्प दिए गए हैं जिनमें से एक सही है। किन्हीं 50 प्रश्नों के उत्तर दें। अपने द्वारा चुने गए सही विकल्प को OMR शीट पर चिहिनत 50 × 1 = 50 करें।

Question Nos. 1 to 100 have four options, out of which only one is correct. Answer any 50 questions. You have to mark your selected option on the



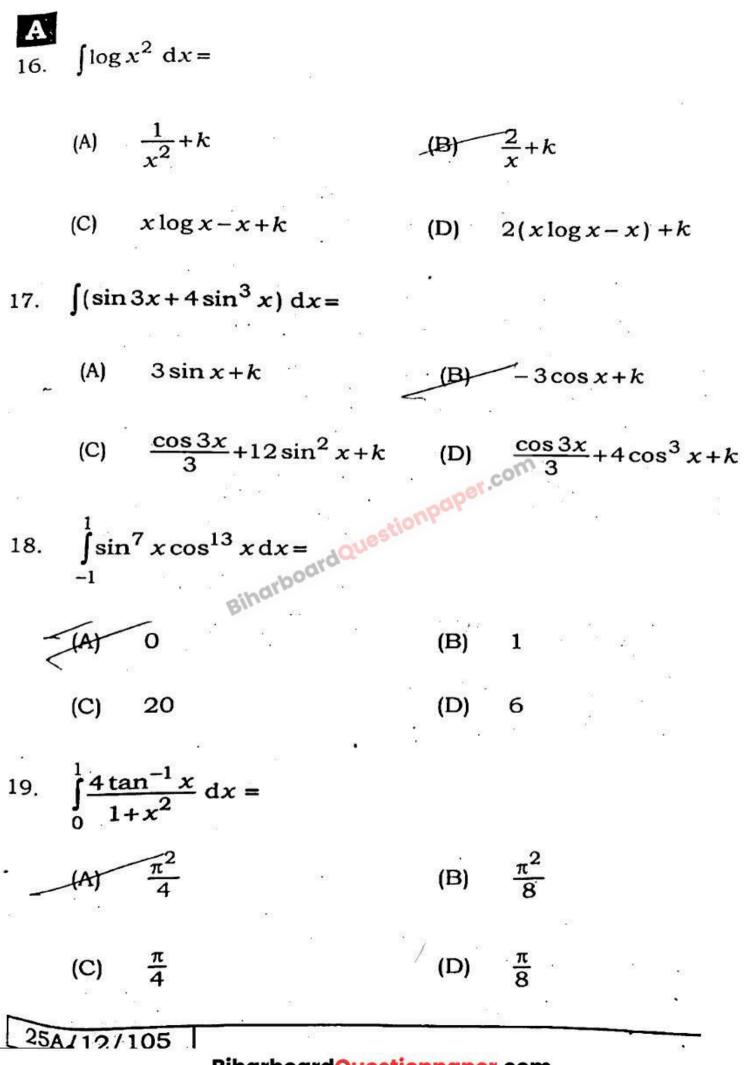


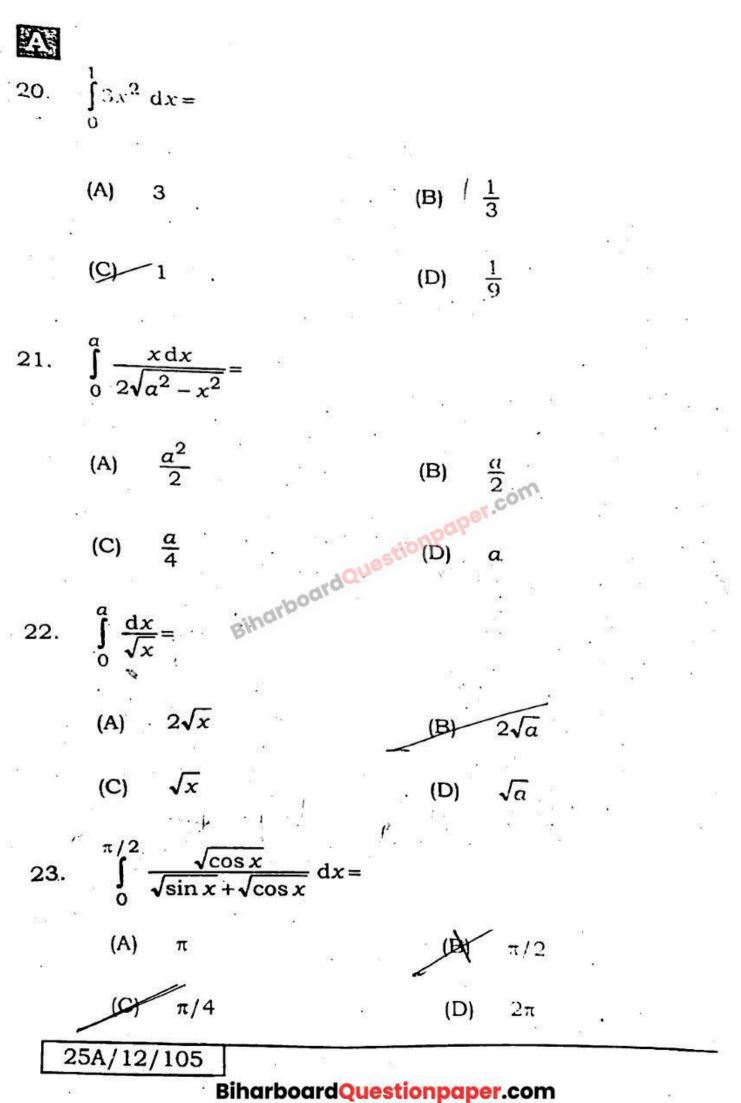


$$A = \begin{bmatrix} 121 \\ 12. \end{bmatrix} \int \frac{\cos 2x}{\cos x + \sin x} dx = \begin{bmatrix} (A) & \sin x - \cos x + k & (B) & -\sin x - \cos x + k \\ (C) & \sin x + \cos x + k & (D) & -\sin x + \cos x + k \end{bmatrix}$$

$$A = \begin{bmatrix} (A) & -\sin (\pi x + \sin \pi) & (B) & -\pi \sin (\pi x) \\ (A) & -\sin (\pi x + \sin \pi) & (B) & -\pi \sin (\pi x) \\ (C) & -\sin \pi x & (D) & \sin x \end{bmatrix}$$

$$A = \begin{bmatrix} (A) & -\sin (\pi x + \sin \pi) & (B) & -\pi \sin (\pi x) \\ (C) & -\sin \pi x & (D) & \sin x \end{bmatrix}$$


$$A = \begin{bmatrix} (A) & -\pi x + \sin \pi \\ (C) & -\pi x & (D) & \sin x \end{bmatrix}$$


$$A = \begin{bmatrix} (A) & \frac{x^2}{2} + k + \sin \pi \\ (C) & x + k & (D) & \log \sec (\tan^{-1} x) + k \end{bmatrix}$$

$$A = \begin{bmatrix} (A) & \frac{x^2}{2} + k + \sin \pi \\ (C) & x + k & (D) & \log \sec (\tan^{-1} x) + k \end{bmatrix}$$

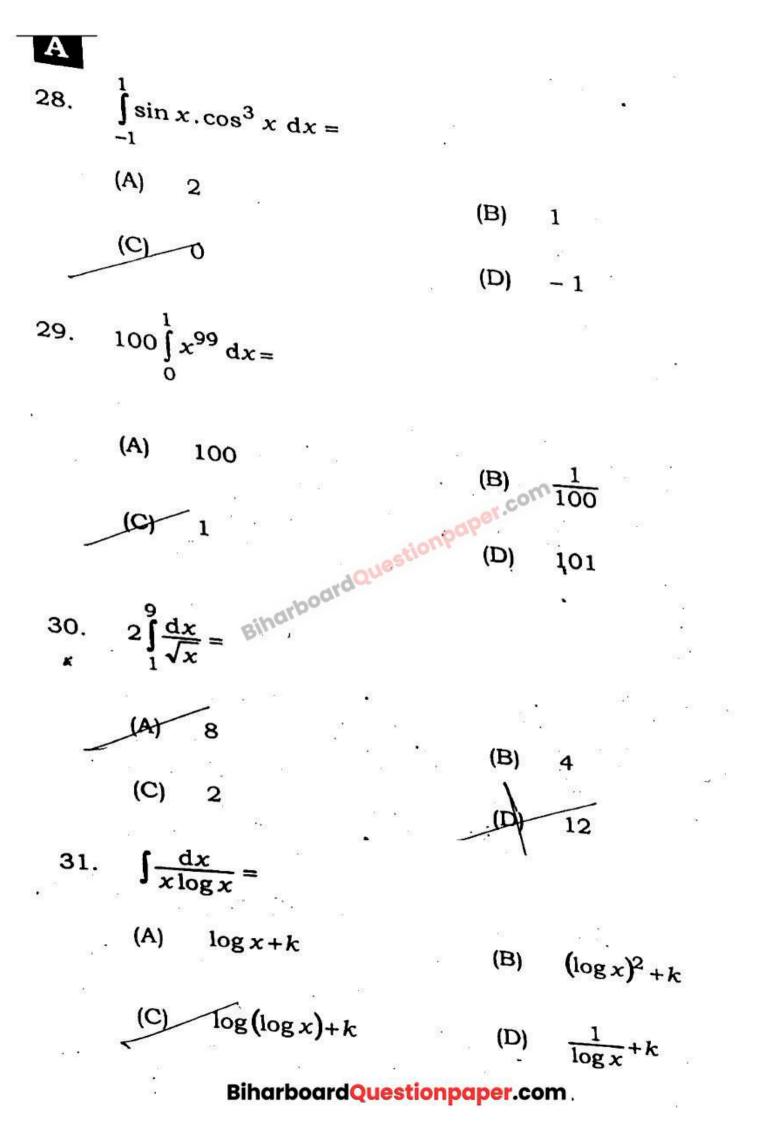
$$A = \begin{bmatrix} (A) & \frac{-1}{e^{-x}} + k & (B) & e^x + k \\ (C) & \frac{1}{e^{-x}} + \frac{1}{x^2} + k & (D) & -e^{-x} + k \end{bmatrix}$$

22





π/2  $\int \log \tan x \, \mathrm{d}x =$ 24. 0


- (A) π/4 (B)  $\pi/2$ 0 (C) (D) π  $25. \quad \int^{1} e^{x} dx =$ 
  - (A) e 1 – e (B)
  - (C) e-1 (D)  $\pi/2$
- $\int \sin x \cdot \cos x \, \mathrm{d}x$ 26.
  - Bihar  $\frac{1}{2}$ (A) 1 (B) (D)  $\frac{1}{4}$ - 1 (C)
  - 27.  $\int_{0}^{1} (x+2x+3x^{2}+4x^{3}) \, \mathrm{d}x =$  $\frac{5}{2}$ (B)
    - (A) 10
      - (C)  $\frac{7}{2}$

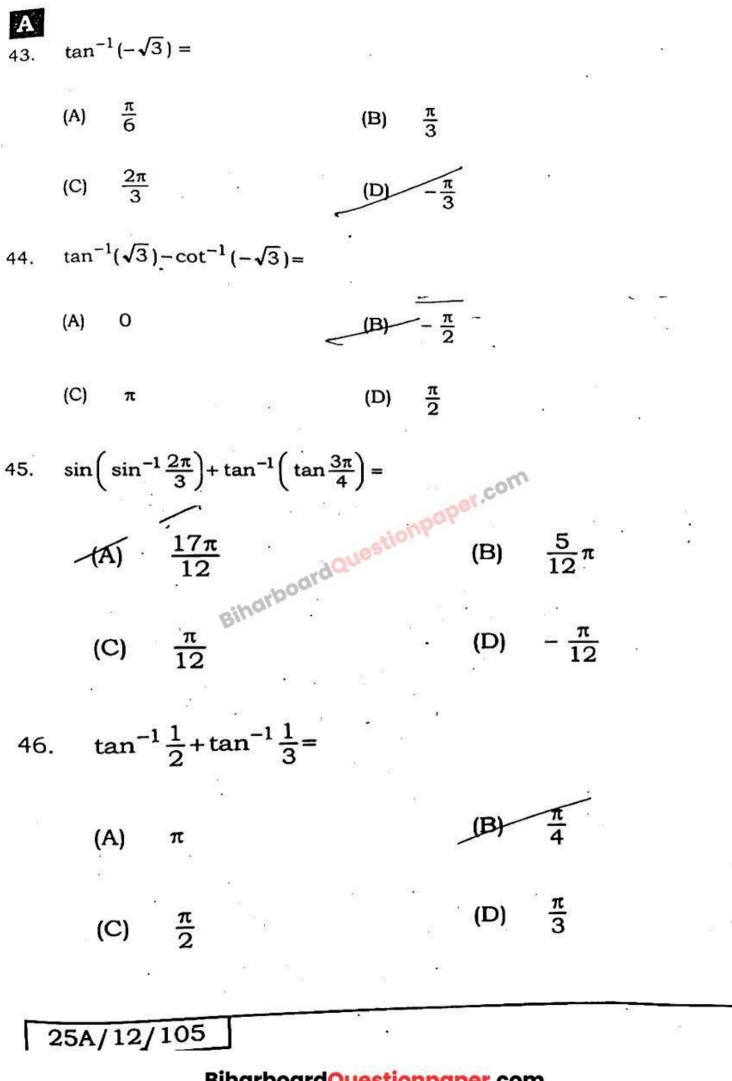
25A/12/105

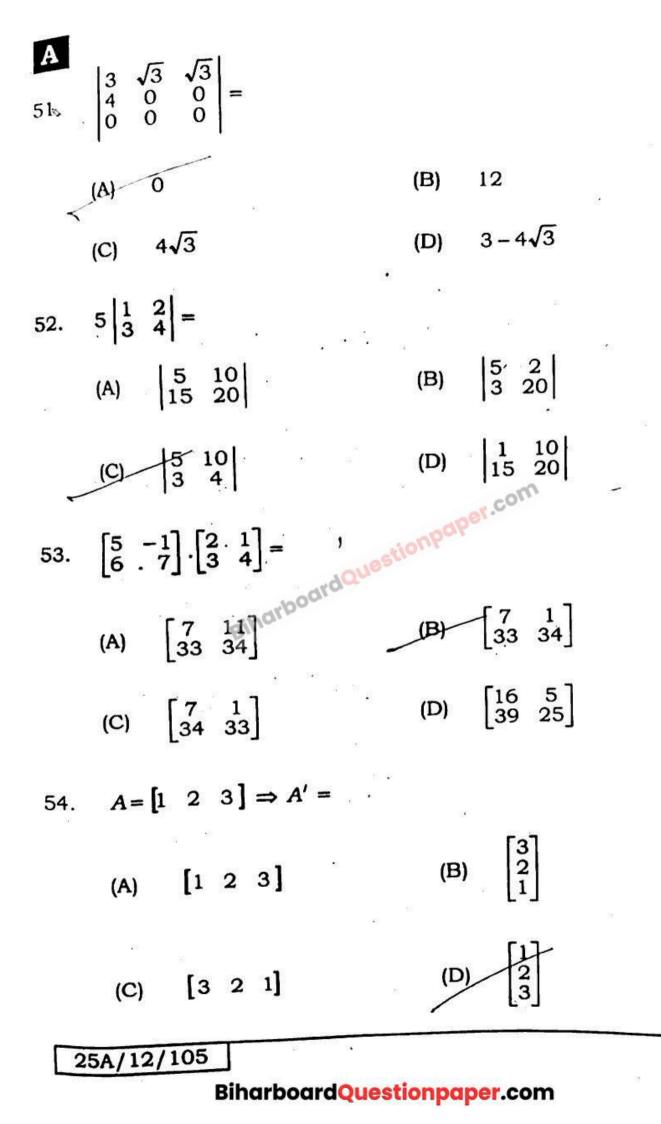
BiharboardQuestionpaper.com

 $\frac{1}{2}$ 

(D)

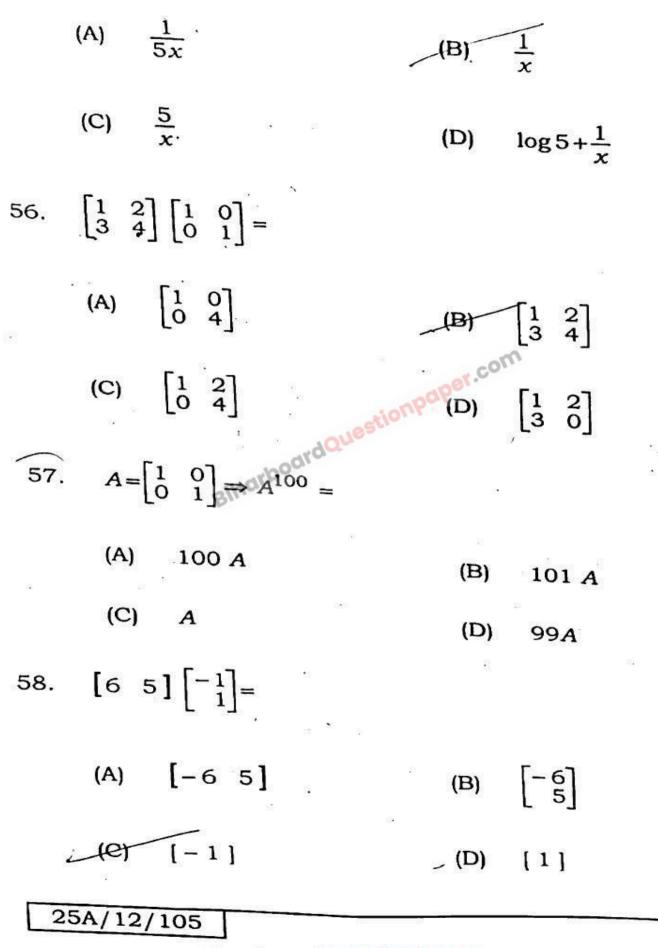


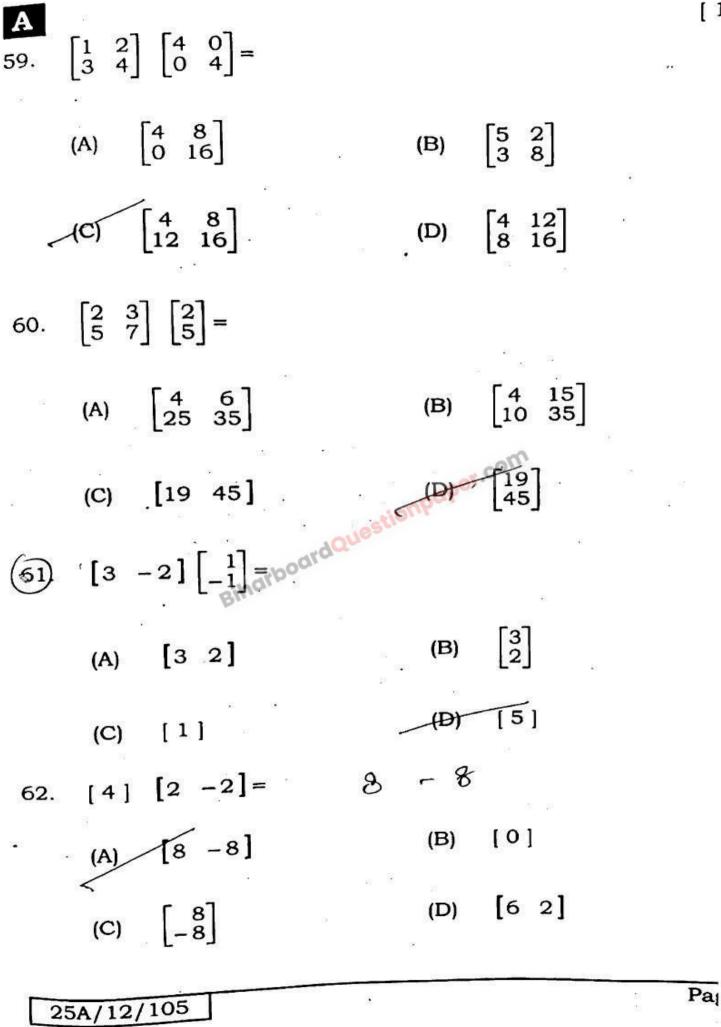

| A   |                                                                                         |                                                                                                     | 121,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 32. | $\int \frac{x}{x^2}$                                                                    | $\frac{3}{-9} dx =$                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | (A)                                                                                     | $\log(x-3)+k$ (B) $\log(x+3)+k$                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     |                                                                                         |                                                                                                     | a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|     | (C)                                                                                     | $-\frac{1}{(x+3)^2}+k$ (D) $\frac{x^2}{2}-3x+k$                                                     | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 33. | यदि n                                                                                   | (A)=4 तथा n(B)=2, तो n(A×B) =                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 8   | (A)                                                                                     | 6 (B) 8                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | (C)                                                                                     | 16 (D) इनमें से कोई नहीं                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | Ifn(                                                                                    | A)=4 and $n(B)=2$ , then $n(A \times B) =$                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     |                                                                                         | i) = ( dird ((2)) = 2, dich ((1))                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 22  | (A)                                                                                     | 6 BiharboardQuestre (B) 8<br>16 BiharboardQuestre (B) 8                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | (C)                                                                                     | 16 Binard (D) none of these                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 34) | यदि सं                                                                                  | क्रेया ' <u>o'</u> इस प्रकार परिभाषित है कि (aob) =a <sup>3</sup> +b <sup>3</sup> , तो 4 o(1 o 2) = | a de la constante de |  |  |  |  |
|     | (A)                                                                                     | 729. (B) 793                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | (C)                                                                                     | 783 (D) 792                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | If operation 'o' is defined as $(a \circ b) = a^3 + b^3$ , then $4 \circ (1 \circ 2) =$ |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | (A)                                                                                     | 729 (B) 793.                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | (C)                                                                                     | 783 (D) 792                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 25  | 25A/12/105 Page 11 / 40                                                                 |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |


[ 121/327 ]  $f: A \rightarrow B$  आच्छादक फलन होगा, यदि 35. (A)  $f(A) \subset B$ f(A) = B(B) (C)  $f(A) \supset B$ (D)  $f(A) \neq B$  $f: A \rightarrow B$  will be an onto function, if (A)  $f(A) \subset B$ (B) f(A) = B(C)  $f(A) \supset B$  $f(A) \neq B$ (D) यदि  $f: R \rightarrow R$ , जहाँ f(x) = 3x - 4 तो  $f^{-1}(x)$  निम्नलिखित में कौन होगा ? 36. (A)  $\frac{1}{3}(x+4)$ BiharboardC (B)  $\frac{1}{3}x-4$ (C) 3x-4अपरिभाषित (D) If  $f: R \to R$  such that f(x) = 3x - 4 then which of the following is  $f^{-1}(x)$  ? (A)  $\frac{1}{3}(x+4)$  $\frac{1}{3}x-4$ (B) (C) 3x - 4(D) Undefined 25A/12/105 Page 12 / 40

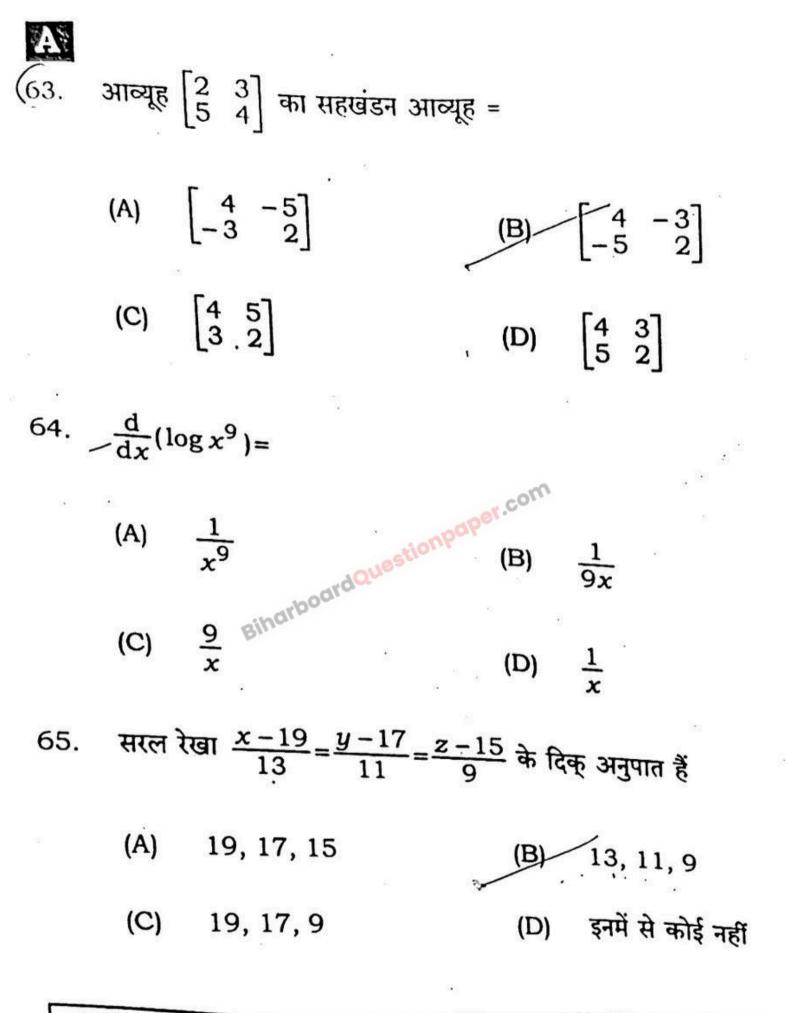
| <b>A</b><br>37. या                                                                           | र संक्रिया              | ' <i>o</i> ' | इस प्रकार | परिभाषित    | है कि       | [ 121/327 ]<br>(aob) =a <sup>2</sup> + b <sup>2</sup> - ab , तो |  |
|----------------------------------------------------------------------------------------------|-------------------------|--------------|-----------|-------------|-------------|-----------------------------------------------------------------|--|
| ( 1                                                                                          | (1 0 2 ) 0 3 =          |              |           |             |             |                                                                 |  |
| (A                                                                                           | ) 18                    | 81           |           | (B)         | 27          |                                                                 |  |
| (C                                                                                           | ) 9                     |              |           | (D)         | 12          | ы<br>ж                                                          |  |
| If operation 'o' is defined as $(a \circ b) = a^2 + b^2 - ab$ , then $(1 \circ 2) \circ 3 =$ |                         |              |           |             |             |                                                                 |  |
| ( <i>F</i>                                                                                   | .) 18                   | ×.           |           | (B)         | 27          |                                                                 |  |
| (0                                                                                           | ) 9                     |              |           | (D)         | 12          | а<br>-                                                          |  |
| 38. माना कि $A = \{1, 2, 3,, n\}$ , तो कितने एकैकी आच्छादी फलन $f: A \rightarrow A$ परिभाषित |                         |              |           |             |             |                                                                 |  |
| हो                                                                                           | सकते हैं ?              | ×            |           | ardquest    | ionper      | ж<br>Т                                                          |  |
| (A)                                                                                          | n                       |              | Biharbo   | (B)         | <u>  n</u>  | 8<br>22                                                         |  |
| (C                                                                                           | $\frac{1}{2}$           | <u>1</u> .   |           | (D)         | <u>(n –</u> | <u>1)</u>                                                       |  |
| Let $A = \{1, 2, 3,, n\}$ . How many bijective functions $f: A \rightarrow A$ can be         |                         |              |           |             |             |                                                                 |  |
| de                                                                                           | fined ?                 | 3            |           |             |             |                                                                 |  |
| (A                                                                                           | .) n                    |              |           | <b>(B</b> ) | ln          |                                                                 |  |
| (0                                                                                           | い <u>1</u> し            | <u>n</u>     |           | (D)         | <u>(n –</u> | <u>1)</u>                                                       |  |
| 25A/                                                                                         | 25A/12/105 Page 13 / 40 |              |           |             |             |                                                                 |  |

•


A  
39. 
$$\tan\left\{\frac{1}{2}\left(\tan^{-1}x + \tan^{-1}\frac{1}{x}\right)\right\} =$$
(A) 1
(B)  $\sqrt{3}$ 
(C) 0
(D)  $\infty$ 
(A)  $\frac{\pi}{2}$ 
(B)  $\cos^{-1}(2x^{2} - 1)$ 
(C)  $\cos^{-1}(1 - 2x^{2})$ 
(D)  $\cos^{-1}(2x^{2} - 1)$ 
(C)  $\cos^{-1}(1 - 2x^{2})$ 
(D)  $\cos^{-1}(2x)$ 
(I)  $(1 - 2x)^{-1}(2x)$ 
(I)  $(1 -$ 







Page

 $\frac{d}{dx}(\log 5x) =$ 





[ 121



25A/12/105

The direction ratios of the straight line

A

$$\frac{x-19}{13} = \frac{y-17}{11} = \frac{z-15}{9} \text{ are}$$
(A) 19, 17, 15 (B) 13, 11, 9  
(C) 19, 17, 9 (D) None of these  
66.  $\frac{1}{12} = \frac{y-12}{13} = \frac{z+13}{14}$  [Ar-fielder,  $\frac{1}{4}$  [Berg  $\frac{1}{4}$  ] yatch  $\frac{1}{6}$ ?  
(A) 11, 12, 13 (B) 11, 12, -13  
(C) 12, 13, 14 (D) -11, -12, 13  
Through which of the following points does the line  

$$\frac{x-11}{12} = \frac{y-12}{13} = \frac{z+13}{14} \text{ pass ?}$$
(A) 11, 12, 13 (B) 11, 12, -13  
(C) 12, 13, 14 (D) -11, -12, 13  
(C) 12, 13, 14 (D) -13  
(C) 12, 13 (D) 12, 13  
(

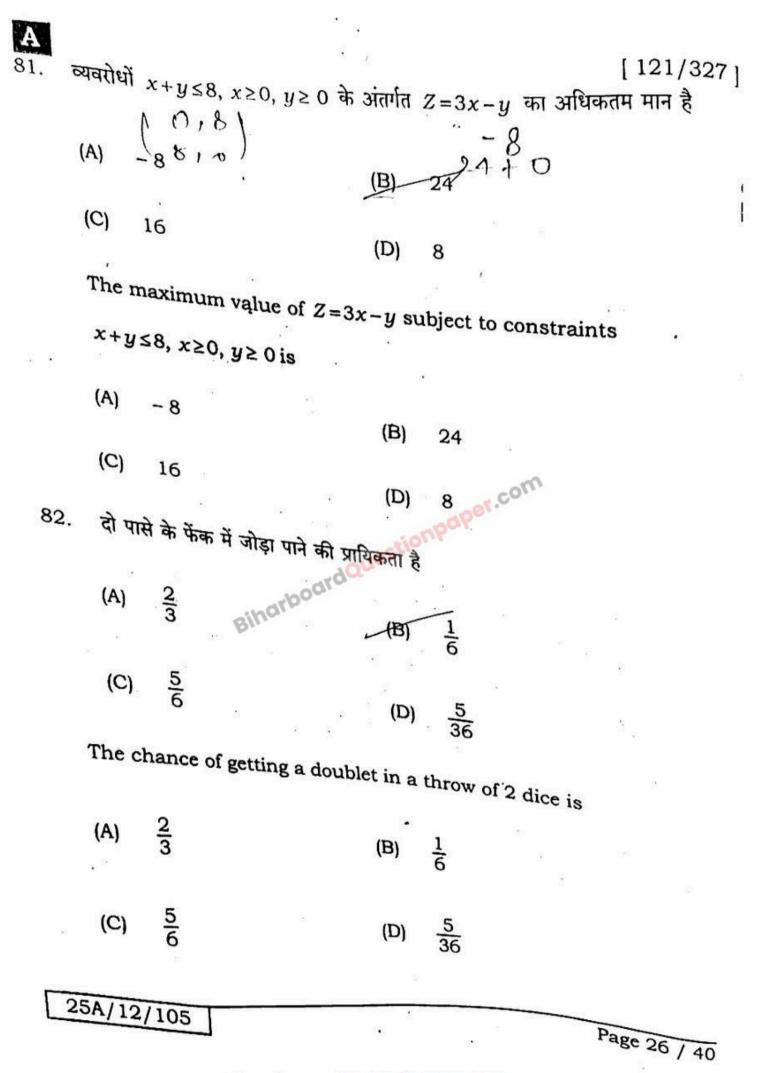
| A<br>If the direction ratios of two parallel lines are 2, 7, 9                        |                        |             |                 |           |             |                   |                |                      |
|---------------------------------------------------------------------------------------|------------------------|-------------|-----------------|-----------|-------------|-------------------|----------------|----------------------|
|                                                                                       | then the value of x is |             |                 |           |             |                   |                |                      |
|                                                                                       | (A)                    | 9           |                 |           | (B)         | 18                |                |                      |
|                                                                                       | (C                     | ) 27        |                 |           | (D)         | 3                 | k              |                      |
| 68. यदि दो समांतर रेखाओं के दिक् अनुपात a, b, c तथा x, y, z हों तो az =               |                        |             |                 |           |             |                   |                |                      |
|                                                                                       | (A)                    | су          | 2               | (B)       | cx          | а <sup>с</sup>    |                |                      |
|                                                                                       | (C)                    | bz          | <u>1</u> 27     | (D)       | npaxper.co  | n,                |                |                      |
| If the direction ratios of two parallel lines are $a$ , $b$ , $c$ and $x$ , $y$ , $z$ |                        |             |                 |           |             |                   |                |                      |
|                                                                                       | then                   |             | Biharbook       | paran     | ei lines ar | e a, b, c         | and <i>x</i> , | y, z                 |
| 92.                                                                                   | dicit                  | uz =        | BIII            | }         | 1           |                   | 175            |                      |
|                                                                                       | (A)                    | cy          | . 3             | (B)       | cx          | а<br>а            |                | ÷                    |
|                                                                                       | (C)                    | bz          | 31<br>(21)      | (D)       | ax          |                   | а<br>8         |                      |
| 69.                                                                                   | यदि दो                 | परस्पर लम्ब | ब रेखाओं के दिव | र् अनुपात | 5, 2, 4 तश  | ЯТ 4, 8, <i>х</i> | हैं. तो ,      | ~ का                 |
|                                                                                       | मान है                 |             | 5 <b>4</b>      |           |             |                   | .,             |                      |
|                                                                                       | (A)                    | 9           |                 | (B)       | -9          | 99)<br>-          |                |                      |
| 28<br>26<br>060                                                                       | (C)                    | 8           | 14<br>16        | · (D)     | - 8         | 31                | đ              | 14<br>131 - 21<br>21 |

25A/12/105

BiharboardQuestionpaper.com

Page 20 / 40

If the direction ratios of two mutually perpendicular lines are A 5, 2, 4 and 4, 8, x then the value x is (B) - 9 9 (A) (D) - 8 8 (C) तल 9x - 8y + 7z = 10 के समांतर एक तल का समीकरण है 70. 9x - 8y + 7z = 59x - 8y - 7z = 5(B) (A) (D) 9x - y + 7z = 59x + 8y + 7z = 5(C) Equation of a plane parallel to the plane 9x - 8y + 7z = 10 is (B) 9x - 8y + 7z = 5 $(A) \cdot 9x - 8y - 7z = 5$ (D) 9x - y + 7z = 59x + 8y + 7z = 5(C)  $|\vec{i} - \vec{j} - 3\vec{k}| =$ 71.  $\sqrt{11}$ (B) (A) 11  $\sqrt{10}$ (D) (C) √7 72.  $(4\vec{i}+3\vec{j})^2 =$ (B) 19 (A) 7 (D) 49 25 (C) × Page 23 / 40 25A/12/105


| А          |                                           | <i>(</i> )                    | 54                                  | (K                                          |                           |             |       |
|------------|-------------------------------------------|-------------------------------|-------------------------------------|---------------------------------------------|---------------------------|-------------|-------|
| 73.        | (7 i -                                    | 8 j +9                        | $\vec{k}$ ).( $\vec{i}$             | $-\overrightarrow{j}+\overrightarrow{k}) =$ | i,                        |             |       |
|            | (A)                                       | 25                            | S.                                  |                                             | _(B)-                     | 24          |       |
|            | (C)                                       | 23                            | jā:<br>V                            |                                             | (D)                       | 22          |       |
| 74.        | $\rightarrow \rightarrow \rightarrow i.i$ | $+\vec{i},\vec{j}$            | $\rightarrow \rightarrow$<br>+ $jj$ | $+\overrightarrow{j}.\overrightarrow{k}$ +  | $\vec{k} \cdot \vec{k} =$ |             |       |
|            | (A)                                       | 5                             |                                     |                                             | (B)                       | 4           | 1 151 |
|            | _10}                                      | 3                             | 2176                                |                                             | (D)                       | 2           | 3.    |
| 75.        | (11                                       | $\vec{i} + \vec{j} + \vec{j}$ | $\vec{k}$ ). $(\vec{i}$ .           | $+\vec{j}+11\vec{k}$                        | Der.com                   | `           |       |
|            | 1929 3923                                 | - 22                          | bodr                                | auestionp                                   | _(B)-                     | <b>23</b> · |       |
|            | •°                                        | 24 B                          | ihare.                              | * <sup>35</sup>                             | (D)                       | 20          | 23    |
| 76.        | (k×                                       | $\vec{j}$ ). $\vec{i}$        | =                                   |                                             |                           | ÷           |       |
| Ţ          | AT                                        |                               |                                     | .*.                                         | (B)                       | 1           |       |
|            | 101                                       | <b>-</b> 1                    |                                     |                                             | (D)                       | $2\vec{i}$  |       |
| 77.        | ( <i>i</i> −2                             | $2\vec{j} + 5\vec{l}$         | ¢).(−2                              | $\vec{i}$ +4 $\vec{j}$ +2                   | $(\vec{k}) = $            |             |       |
|            | (A)                                       | 20                            |                                     |                                             | (B)                       | 18          | *     |
| a <b>-</b> | ler                                       | 0                             |                                     | × *                                         | (D)                       | 4           | 8     |
| 2          | 5A/12/                                    | 105                           | Biharbo                             | ardQuestic                                  | onpaper                   | .com        |       |

.

BiharboardQuestionpaper.com

.

| A78. $(i \times j) + (i \times i) =$ (A) 2(A) 2(C) k79. निम्नलिखित में से कौनं उद्देश्य फल | $\frac{(B)}{1}$ $(D) - \vec{k}$ $= \vec{k}$ |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| $(A) \qquad x \ge 10$                                                                      | (B) <i>y</i> ≥0                             |  |  |  |  |  |
| (C) z = 7x + 3y                                                                            | (D) इनमें से सभी                            |  |  |  |  |  |
| Which of the following is objective function ?                                             |                                             |  |  |  |  |  |
| (0)                                                                                        | (B) $y \ge 0$<br>(D) All of these           |  |  |  |  |  |
| 80. व्यवरोधों $x+y \le 35$ , $x \ge 0, y \ge 0$ के अंतर्गत $Z = 2x+y$ का अधिकतम मान है     |                                             |  |  |  |  |  |
| (A) 35                                                                                     | (B) 105                                     |  |  |  |  |  |
| 1 (0) 70                                                                                   | (D) 140                                     |  |  |  |  |  |
| The maximum value of $Z=2x$ -                                                              | +y subject to constraints                   |  |  |  |  |  |
| $x+y \le 35, x \ge 0, y \ge 0$ is                                                          |                                             |  |  |  |  |  |
|                                                                                            | (B) 105                                     |  |  |  |  |  |
| (C) 70                                                                                     | (D) 140                                     |  |  |  |  |  |
| 25A/12/105                                                                                 | Page 25 / 40                                |  |  |  |  |  |



प्रायिकता का योग प्रमेय है

83.

(A) 
$$P(A \cup B) = P(A) + P(B)$$

(B) 
$$P(A \cup B) = P(A) + P(B) + P(A \cap B)$$

(C) 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(D) 
$$P(A \cup B) = P(A)$$
.  $P(B)$ 

Addition theorem of probability is

(A) 
$$P(A \cup B) = P(A) + P(B)$$

$$(E) \quad P(A \cup B) = P(A) + P(B) + P(A \cap B)$$

(C) 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$(D) \quad P(A \cup B) = P(A). \ P(B)$$

84. यदि घटना E का अनुकूल संयोगानुपात a: b हो, तो P(E) =

(A) 
$$\frac{a}{a-b}$$
 (B)  $\frac{a}{a+b}$ 

(C) 
$$\frac{b}{a+b}$$
 (D)  $\frac{b}{a-b}$ 

25A/12/105

Page 27 / 40

BiharboardQuestionpaper.com

aper.col

121/327

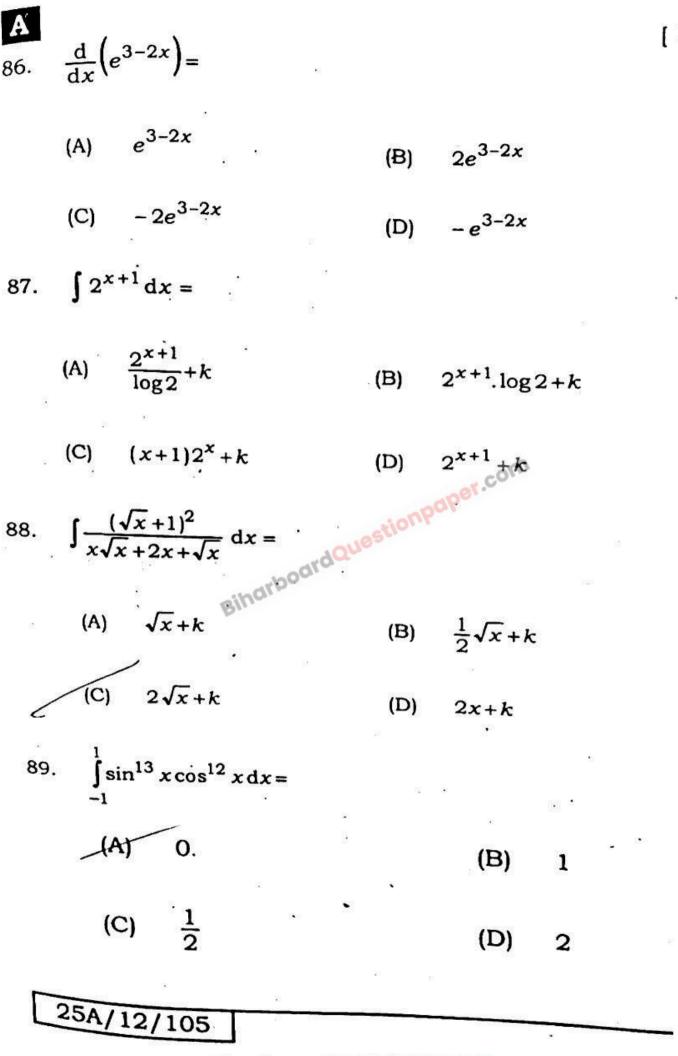
If odds in favour of event E be a: b, then P(E) =

(A) 
$$\frac{a}{a-b}$$
 (B)  $\frac{a}{a+b}$ 

(C) 
$$\frac{b}{a+b}$$
 (D)  $\frac{b}{a-b}$ 

85. प्रायिकता का गुणन नियम है

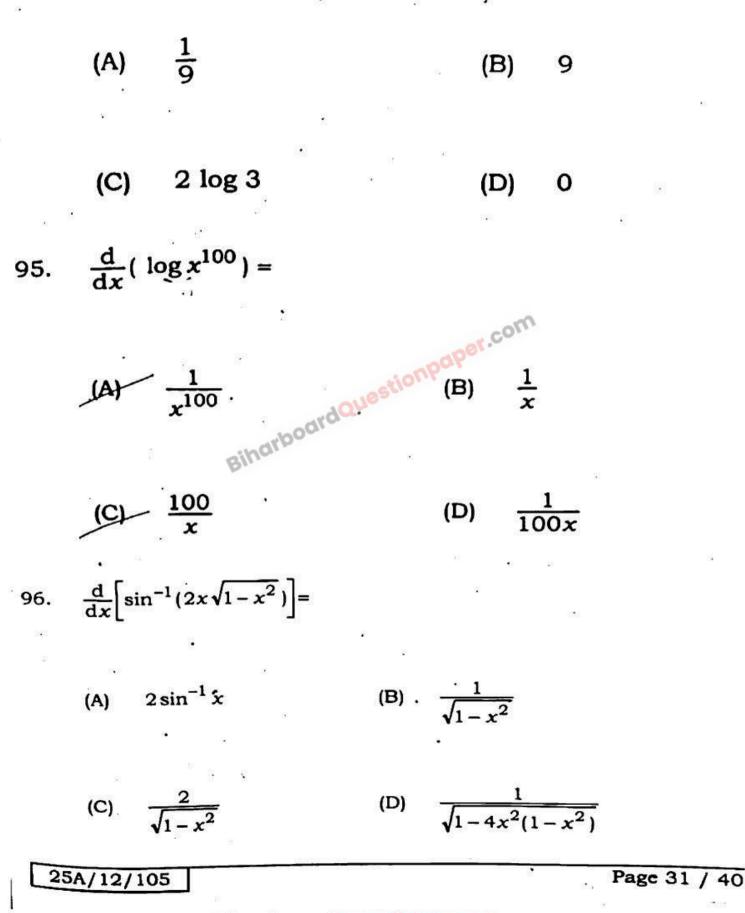
$$(A) P(A \cap B) = P(A).P(B)$$

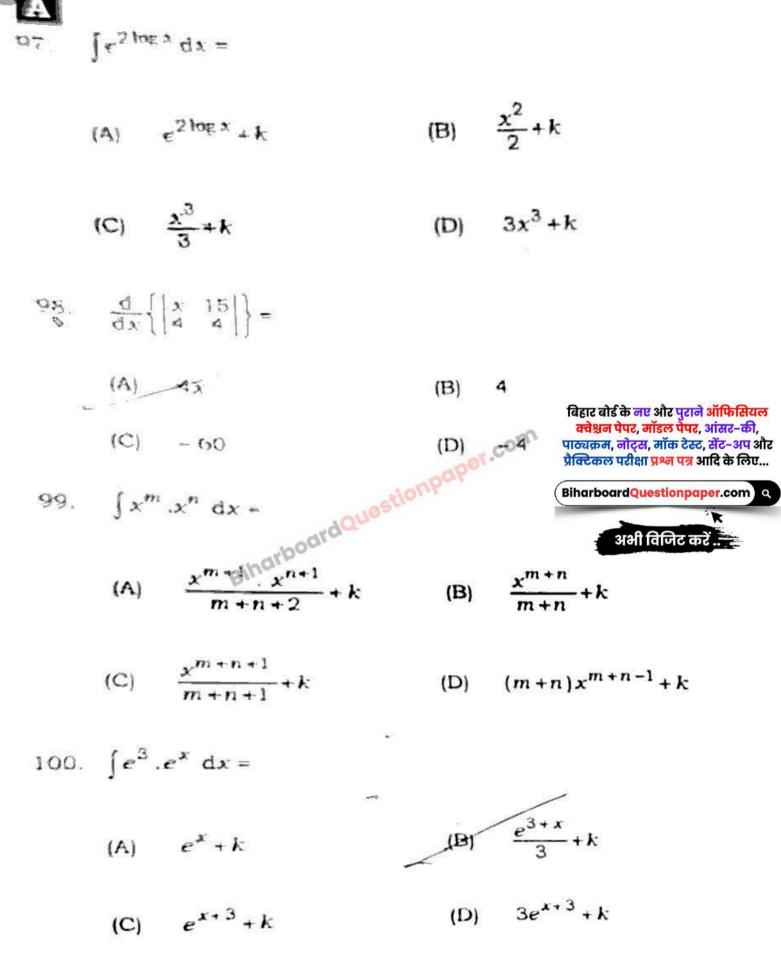

$$(B) \quad P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

- Questionpaper.com (C)  $P(A \cap B) = P(A) \cdot P(B/A)$
- इनमें से कोई नहीं (D)

Multiplication theorem of probability is

- (A)  $P(A \cap B) = P(A).P(B)$
- (B)  $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
- (C)  $P(A \cap B) = P(A).P(B/A)$
- (D) None of these


25A/12/105




[ 121

90.  $\int_{0}^{2} e^{x} dx =$ (A)  $e^2$ (B)  $e^2 - 2$  $tC) e^2 - 1$ (D) e - 191.  $\int_{\alpha}^{\beta} \phi(x) dx + \int_{\beta}^{\alpha} \phi(x) dx =$ (A) 2 (B) 1 92.  $\frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ 2 & x \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ 2 & x \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ \begin{vmatrix} x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ x & x \\ y & z \end{vmatrix} \right\}_{\alpha} = \frac{1}{\alpha} \frac{d}{dx} \left\{ x & x \\ y & z \end{vmatrix}$ (A)  $x^2 - 2x$ (B) 2x-2(D) x-2(C) 2x+2 $(93, \quad \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \lim_{n \to 1} \frac{x^n - 1}{n+1} \right\} =$  $(B)' \frac{1}{2}$ tAT 0 (D) 1 (C)  $\frac{1}{2}x$ 

A 94.  $\frac{d}{dx} \{ \log_3 x \times \log_x 3 \} =$ 





Page

1121/: