SI Code: 202

2017 [ANNUAL] MATRIC EXAMINATION

Roll No. of Candidate:	
------------------------	--

MATHEMATICS

गणित

Total Questions: 47

[Time: 03 Hrs. 15 Minutes]

Total Printed Pages: 12

[Full Marks: 100]

परीसाधी के लिये निर्देश

Instructions for the candidate:

- per.co परीक्षार्थी यथा संभव अपने शब्दों में ही उत्तर दें। Candidates are required to give their answers in their own words as far as practicable.
- दाहिनी ओर हांशिये पर दिये हुए अंक पूर्णांक निर्दिष्ट करते हैं। 2 Figures in the right hand margin indicate full marks.
- सभी प्रश्न अनिवार्य हैं। 3

All questions are compulsory.

- उत्तर देते समय परीक्षार्थी यथासंभव शब्द-सीमा का ध्यान रखें। While answering, the candidate should adhere to the word limit as far as practicable.
- इस प्रश्न पत्र को पढ़ने के लिये 15 मिनट का अतिरिक्त समय दिया गया है। 5 15 Minutes of extra time has been allotted for the candidates to read the questions.

[202]

Page 1 of 12

Turn over

राही उत्तर पुने :-

Choose the correct option-

द्विचात संगीकरण $x^2 + 2x - 3 = 0$ के मूलों के योग का मान होगा-

(1)

(四) 2

 (π) $\frac{1}{2}$

 (π) $-\frac{1}{2}$

The sum of roots of the quadratic equation $x^2 + 2x - 3 = 0$ will be-

(a) -2

(b) 2

(d) $-\frac{1}{2}$

यदि बहुपद $p(x) = x^2 + 7x + 10$ के शून्यंक α . β हो तो α . β का मान होगा 2.

(1)

(南)~10

(되) <u>1</u>

If α , β are the zeros of the quadratic polynomial $p(x) = x^2 + 7x + 10$, then the value of a, B will be-

(a) 10

चरों को आरोही या अवरोही क्रम में रखने पर बीच वाले चर का मान कहलायेगा-3.

(1)

(क) माध्य

(ख) माध्यिका

(ग) बहुलक

(घ) कुछ नहीं

Putting the value of variables in ascending or descending order, the value of middle variable will be called-

(a) Mean

(b) Median

(c) Mode

(d) None of these

I.	√5 एक संख्या है−		(1)
	(क) परिमेय	(ख) अपरिमेय	
	(ग) पूर्णीक	(घ) प्राकृत	
	$\sqrt{5}$ is a number-		
	(a) Rational number	(b) Irrational number	
	(c) Integer	(d) Natural number	
5 .	बिन्दु (4, -5) की दूरी मूल बिन्दु से	होगी- (ख) 3 (घ) -√41	(1)
	(क) · √41	(a) 3	
	(ग) -3	(घ) -√41	
	Distance from the origin of the	point (4, -5) will be-	
	(a) $\sqrt{41}$	(b) 3	
	(c) -3	(d) -√41	
6.	बाह्य बिन्दु से वृत्त पर खींची गई स	ार्श रेखाओं की लम्बाई होगी—	(1)
	(क) असमान	(ख) समान	
	(ग) दुगुनी	(घ) आघा	9
	The length of Tangents on a c	rcle from any external point will be-	
	(a) Unequal	(b) Equal	
	(c) Double	(d) Half	

एक	शंकु की	ऊँचाई 24 cm, आधार की जि	ज्या ६	cm है। शंकु का आयतन हागा-	(1
				1002402	
(ग)	100π				
The	height	of cone is 24 cm, radius of	bas	e is 6 cm. Then volume of cone will be.	
(a)	288π		(b)	188π	
(c)	100π		(d)	90π	
निश्चि	वत घटता	ा की प्रायिकता होगी-		om	(1)
(ক)	1		(ন্ত)	2	
(শ)	0		(u)	1 000	
The	probabi	lity of certain event will b	c-	OUL	
(a)	1		(b)	2	
(c)	0	TrdQ1	(d)	$\frac{1}{2}$	
		मान होगा -			(1)
(ক)	sec²θ		1000		
(ग)	tan²θ	9	(ਬ)	cot²θ	
The v	alue of	$1 + \cot^2\theta$ will be-			
(a)	sec²θ		b)	cosec²θ	
(c)	tan²0	(d)	cot²θ	
2]		Pao	a 4 o	(12	_
	(春) (刊) The (a) (c) (中) (市) (中) (中) (中) (中) (中) (中) (中) (中) (中) (中	(Φ) 288π (Π) 100π The height (a) 288π (c) 100π निश्चित घटत (Φ) 1 (Π) 0 The probabi (a) 1 (c) 0 1 + cot²θ Φη (Φ) sec²θ (Π) tan²θ The value of (a) sec²θ (c) tan²θ	(क) 288π (ग) 100π The height of cone is 24 cm, radius of (a) 288π (c) 100π निश्चित घटता की प्राधिकता होगी— (क) 1 (ग) 0 The probability of certain event will be (a) 1 (c) 0 1 + cot²θ का मान होगा— (क) sec²θ (ग) tan²θ The value of 1 + cot²θ will be- (a) sec²θ (c) tan²θ	(क) 288π (ख) (т) 100π (प) The height of cone is 24 cm, radius of bas (a) 288π (b) (c) 100π (d) निश्चित घटता की प्रायिकता होगी— (क) 1 (ख) (ग) 0 (प) The probability of certain event will be- (a) 1 (b) (c) 0 (d) 1 + cot²θ का मान होगा— (क) sec²θ (घ) (ग) tan²θ (घ) The value of 1 + cot²θ will be- (a) sec²θ (b) (c) tan²θ (d)	(क) 288π (ख) 188π (п) 100π (u) 90π The height of cone is 24 cm, radius of base is 6 cm. Then volume of cone will be. (a) 288π (b) 188π (c) 100π (d) 90π ितिष्यत घटता की प्राधिकता होगी— (क) 1 (ख) 2 (π) 0 (u) ½ The probability of certain event will be. (a) 1 (b) 2 (c) 0 (d) ½ 1 + cot²θ का मात होगा— (क) sec²θ (घ) cosec²θ (π) tan²θ (घ) cot²θ The value of 1 + cot²θ will be- (a) sec²θ (b) cosec²θ (c) tan²θ (d) cot²θ

10
$$\cos \frac{\pi}{3}$$
 का भाग होगा-

(1) $\frac{\sqrt{3}}{2}$ (2) $\frac{1}{\sqrt{3}}$

(2) $\frac{\sqrt{3}}{2}$ (3) $\frac{1}{\sqrt{3}}$

The value of $\cos \frac{\pi}{3}$ will be-

(a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{3}}$

(c) $\frac{\sqrt{3}}{2}$ (d) $\sqrt{3}$

11. $\pi \nabla \overline{s}$ (1) $\pi \sin s$ (1) $\pi \sin s$

Page 5 of 12

Turn ove

[202]

,	15 बिन्दु (x ₁ , y ₁) और (x ₂ , y ₂) को मिलाने वाली रेखा के मध्य बिन्दु का निर्देशांक होगा	(1,
	The co - ordinates of middle point of line joining points (x_1, y_1) and (x_2, y_2)	. y21 w1
	bc	
"	6 बिन्दु (a, b) और (-a, -b) के बीच की दूरी होगी	(1)
6	The distance between (a, b) and (-a, -b) will be	
17	पदि $2 \sin A = \sqrt{3}$ तो A का मान होगा	(1)
	If $2 \sin A = \sqrt{3}$ then the value of A will be	
18	If $2 \sin A = \sqrt{3}$ then the value of A will be यदि $\cos A = \frac{4}{5}$ तो $\tan A$ का मान होगा।	(1)
	If $\cos A = \frac{4}{5}$ then the value of $\tan A$ will be	
19 .	सही या गलत – दो संख्याओं का गुणनफल = H.C.F. × L.C.M.	(1)
	True or False - The product of two numbers is equal to H.C.F. × L.C.M.	
20.	अधिकतम बारम्बारता वाले वर्ग कोकहते हैं।	(1)
	The class which has maximum frequencies is called	
21.	द्विघात बहुपद $2x^2 - 8x + 6$ के शून्यांको का योग एवं गुणनफल ज्ञात करें।	(2)
	Find the sum and product of zeroes of quadratic polynomial $2x^2 - 8x + 6$	
22.	द्विघात समीकरण के मूलों के वास्तविक एवं समान होने के लिए शतौं को लिखें।	(2)
	Find the conditions of roots of quadratic equation to be real and equal.	
23.	एक समबाहु त्रिभुज की परिमिति 30 सेमी. है इसका क्षेत्रफल ज्ञात कीजिए।	(2)
	The parameter of an equilateral triangle is 30 cm. Find its area.	807, 50
[202	Page 6 of 12	

(2) वित्र में OP का मान जात करें गदि स्पर्श रेजा PA = 12 cm और OA = 5 cm है। In figure, find the value of OP, if Tangent PA = 12 cm and OA = 5 cm. बिन्दुओं A (5, 2), B (4, 7) 'और (-7.-4) से बनने वाले △ ABC का सेक्स र झात <u>क</u>रें।. (2) Find the area of Δ ABC whose vertices are A (5, 2), B (4, 7) and (5, 4)एक वृत्त की परिधि हुई संगी है। वृत्त का क्षेत्रकृत झाले करें। (2) 26 Find the area of circle whose circumference is \$5 cm. दो धनो जिम्मे से प्रत्येक का आयतन ६४ शही है के संस्था फलको को जा टकर एक धनान बनाया (2) जाता है। धनाभ का पृष्ठीय क्षेत्रकल जात करें। Two cubes each of volume 64 cm3 are joint end to end. Find the surface area of the resulting cuboid उस त्रिमुज का केन्द्रक ज्ञात करे जिनके शीर्ष (3, -5), (-7, 4) तथा (10, -2) है। (2) Find the centroid of a triangle whose vertices are (3, -5), (-7, 4) and (10, -2). यदि tan A = cot A तो सिद्ध करे - A + B = 90° (2) If $\tan A = \cot A$ then prove that - $A + B = 90^{\circ}$ '60° का त्रिकोणमितीय अनुपात ज्ञात करें। (2) Find the trigonometric ratios of 60°

Page 7 of 12

(Turn over

[202]

31. A.P. 3, 8, 13, 18का कीन सा पद 78 है? (2)
Which term of an A.P. 3, 8, 13, 18 is 78?

32 सिद्ध करे कि √3 अपरिमेय संख्या है। (3)

Prove that $\sqrt{3}$ is an irrational number.

33 अभाज्य गुणन खंड विधि से 96 और 404 का H.C.F. और L.C.M. ज्ञात करें। (3)
Find the H.C.F. and L.C.M. of 96 and 404 by the prime factorisation method.

34. $13 - x^2 = (x + 5)^2$ को हल करें। Solve: $13 - x^2 = (x + 5)^2$

35. एक समकोण त्रिभुज की जैंचाई आधार से 7 सेमी. कम है। यदि कर्ण 13 सेमी. का हो तो अन्य दो भुजाओं का मान ज्ञात करें।

The height of a right angle triangle is 7 cm less than its base. If hypotenuse is 13 cm then find the value of remaing two sides.

36. समबाहु Δ ABC की प्रत्येक भुजा a इकाई है तो सिद्ध करें कि त्रिभुज का शीर्ष लम्ब $\frac{\sqrt{3}}{2}$ a होगा।

Each side of an equilateral triangle ABC is a units. Prove that the altitude of the triangle will be $\frac{\sqrt{3}}{2}$ a.

37 K का मान ज्ञात कीजिए यदि बिन्दु A (2, 3), B (4, K) और C (6, -3) सरेख हैं।

[3] If points A (2, 3), B (4, K) and C (6, -3) are collinear, then find the value of K.

[202]

एक थेले में 3 लाल और 5 काली गेंद्रे हैं। उस थैले में से एक गेंद्र यादृष्ट्या निकाली जाती है। 38. (3) उसकी प्रायिकता क्या है कि गेंद (i) लाल हो (ii) लाल नहीं हो A bag contains 3 red balls and 5 black balls. One ball is drawn at random. Find the probability (i) ball is red (ii) ball is not red.

39.
$$\sqrt[4]{4}$$
 $\tan (A + B) = \sqrt{3}$ $\sqrt[4]{3}$ $\tan (A - B) = \frac{1}{\sqrt{3}}$

 $0 < A + B < 90^{\circ}, A > B$.

तो A और B का मान ज्ञात करें।

If $\tan (A + B) = \sqrt{3}$ and $\tan (A - B) = \frac{1}{\sqrt{3}}$

0< A + B < 90°, A > B

then find the value of A and B.

तो A और B का मान ज्ञात करें।

If
$$\tan (A + B) = \sqrt{3}$$
 and $\tan (A - B) = \frac{1}{\sqrt{3}}$
 $0 < A + B < 90^{\circ}, A > B$

then find the value of A and B.

40. सिद्ध करें $\sqrt{\frac{1 + \sin A}{1 - \sin A}} = \sec A + \tan A$

(3)

Prove that $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$

मिम्नलिखित बारम्बारता बंटन सारणी से माध्य ज्ञात करें।

85-100 वर्ग अन्तराल 10-25 55-70 70-85 25-40 40-55 6 बारम्बारता 2 3 7 6 6

Find the mean of following frequency distribution:

C.I	10-25	25-40	40-55	55-70	70-85	85-100
frequency	2	. 3	7	6	6	6

[202]

Page 9 of 12

[Turn over

(3)

(3)

वर्ग अन्तराल	25-30	30-35	35-40	40-45	45-50	50-55
बारम्बारता	25	34	50	42	38	14

Calculate the mode for following frequency distribution:

C.1	25-30	30-35	35-40	40-45	45-50	50-55
frequency	25	34	50	42	38	14

43 एक खिलौना 3.5 सेमी. त्रिज्या वाले शंकु के आकार का है जो उसी त्रिज्या वाले एक अर्घगोले पर अच्यारोपित है। इस खिलौने की सम्पूर्ण ऊँचाई 15.5 सेमी. है। इस खिलौने का सम्पूर्ण पृष्ठीय क्षेत्रफल

व आयतन ज्ञात कीजिए।
$$\pi = \frac{22}{7}$$
 (5)

A toy is in the form of a cone mounted on a hemisphere of radius 3.5 cm. The total height of the toy is 15.5 cm. Find the total surface area and volume of the toy. $\pi = \frac{22}{7}$

Solve by graphical method:

$$2x + y = 6$$
 and $4x - 2y = 4$

एक मीनार के पाद से एक भवन के शिखर का उन्नयन कोण 30° है और भवन के पाद से मीनार क शिखर का उन्नयन कोण 60° है। यदि मीनार की ऊँचाई 50मी. है तो भवन की ऊँचाई निकालें? (5) The angle of elevation of the top of building from the foot of a tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 metre high, find the height of the building.

अथवा

एक समतल जमीन पर खड़ी मीनार की छाया उस स्थिति में 40 मी. अधिक लम्बी हो जाती है जबकि सूर्य का उन्नयन कोण 60° से घटकर 30° हो जाता है। मीनार की ऊँचाई झात कीजिए।

The shadow of a tower standing on a level ground is found to be 40m. longer when the sun's altitude is 30° than when it is 60°. Find the height of the tower.

46. सिद्ध करें कि दो समरूप त्रिमुजों के क्षेत्रफलों का अनुपात उनके संगत भुजाओं के वर्गों के अनुपात में होता है।

Prove that the ratio of the areas of two similar triangular is equal to be square of the ratio of their corresponding sides.

अथवा

यदि किसी त्रिमुज की एक मुजा का वर्ग अन्य दो भुजाओं के वर्गों के योग के बराबर हो तो पहली मुजा के सम्मुख कोण समकोण होता है।

In a triangle, if square of one side is equal to the sum of the square of the other two sides, than the angle opposite the first side is right angle.

[202]

Page 11 of 12

[Turn over

3 सेमी. त्रिज्या का एक वृत्त खीथे। उस वृत्त पर युग्म स्पर्श रेखा खीथे जो एक दूसरे के साथ 60° √ा
कोण बनाती हैं।

Draw a circle of radius 3 cm. Draw a pair of tangents to the circle, which are inclined to each other at an angle of 60°

अथवा

5 सेमी., 6 सेमी. और 7 सेमी. भुजाओं वाले एक त्रिमुज की रचना कीजिए और एक अन्य समरूप त्रिमुज की रचना कीजिए जिसकी भुजाएं दिए हुए त्रिमुज की संगत भुजाओं की $\frac{5}{7}$ गुनी हो।

Construct a triangle whose sides are 5 cm., 6 cm and 7 cm. construct a similar triangle such that each of its side is $\frac{5}{7}$ of the corresponding sides of the triangle.

बिहार बोर्ड के नए और पुराने ऑफिसियल क्वेश्रन पेपर, मॉडल पेपर, आंसर-की, पाठ्यक्रम, नोट्स, मॉक टेस्ट, सेंट-अप और प्रैक्टिकल परीक्षा प्रश्न पत्र आदि के लिए...

BiharboardQuestionpaper.com

अभी विजिट करें ..

[202]

Page 12 of 12